
OpenAttestation SDK Overview

Version: 1.6

December 2012

OpenAttestation SDK (OAT)
A SDK for Remote Attestation

Table of Contents

1 Introduction ... 2

1.1 Scope ... 2

1.2 Architecture... 2

2 A Sample Usage model ... 4

3 OpenAttestation Components ... 5

4 OpenAttestation control flow .. 6

4.1 HostAgent Installation/Provisioning – EK and AIK certificates 6

5 Attestation Control flow ... 7

5.1 Host initiated attestation ... 7

6 OpenAttestation API ... 8

6.1 Security Notes ... 8

6.2 API Request/Response Types ... 8

6.3 Authentication header ... 8

6.4 Example of request with headers: JSON .. 9

6.5 Attestation Service API... 9

6.5.1 Add Host ... 9

6.5.2 Edit Host ... 10

6.5.3 Delete Host.. 10

6.5.4 Query for Hosts ... 11

6.5.5 Poll Hosts for Trust Status .. 11

6.6 WhiteList Service API .. 12

6.6.1 Add Operating System (OS) ... 13

6.6.2 Edit OS .. 13

6.6.3 Delete OS .. 13

6.6.4 View OS .. 14

6.6.5 Add OEM .. 15

6.6.6 Edit OEM .. 15

6.6.7 View OEM .. 16

6.6.8 Delete OEM .. 16

6.6.9 Add MLE (Measured Launch Environment) .. 17

6.6.10 Edit MLE .. 17

6.6.11 View MLE .. 18

6.6.12 Search MLE .. 19

6.6.13 Delete MLE ... 20

6.6.14 Add PCR White List ... 20

6.6.15 Update PCR White List .. 21

6.6.16 Delete PCR White List.. 21

1 Introduction

The Trusted Computing Group has defined a series of specifications that define how a

commercial computing platform can support code measurement in a trusted manner.

Intel has developed an OpenAttestation SDK built on NSA’s National Information

Assurance Research Laboratory (NIARL) developed Host Integrity at Startup to measure

and report status for host platforms which contain a Trusted Platform Module (TPM).

The implementation takes advantage of Infrastructure Work Group Integrity Report

Schema Specification

http://www.trustedcomputinggroup.org/resources/infrastructure_work_group_integrity_re

port_schema_specification_version_10/

The OpenAttestation SDK supports web API for 3
rd

 party software to integrate and

access web-based attestation appraisals in order to support cloud usage model.

The OpenAttestation SDK is intended to be merged, modified and distributed as 3
rd

 party

ISV’s cloud management stacks. ISV should enhance OAT for its distribution or

enhance security implementation into their products

1.1 Scope

This guide describes OpenAttestation architecture and exported APIs. The intended

audients can be ISV developers or administers of cloud providers.

1.2 Architecture

This above diagram highlights OpenAttestation architecture. OpenAttestation, as part of

3
rd

 party ISV’s software stack, enables ISV software remotely to retrieve and verify target

http://www.trustedcomputinggroup.org/resources/infrastructure_work_group_integrity_report_schema_specification_version_10/
http://www.trustedcomputinggroup.org/resources/infrastructure_work_group_integrity_report_schema_specification_version_10/

hosts’ TPM PCRs and verify hosts’ integrity through exported Query API. Accordingly,

administer of cloud providers can pre-setup WhilteList tables, e.g., good/known PCR

values, a.k.a, measurements, through SDK exported data table access APIs.

OpenAttestation service runs with Privacy Certificate Authority (PrivacyCA) and

Appraiser to communicate with HostAgent runs on target hosts. PrivacyCA provisions

and certifies hosts’ Attestation Identify key, where Appraiser communicates with

HostAgent, access through TrouserS TSS stack, to retrieve and verify a host’s PCRs.

2 A Sample Usage model

Following diagram exemplifies possible usage model in cloud computing environment.

Where in a cloud computing environment, a subscriber may require a service must be run

on a trusted platform. That is, hosts running with good/known software. Attestation

service provides ISV software with capability to verify target hosts’ integrity before

dispatch task(s) onto the host.

3 OpenAttestation Components

Following diagram describes exported components of Attestation service

Attestation Service API HTTPS service exporting Restful API to maintain Hosts and

enable ISV software to query hosts’ integrity status

WhiteList Service API HTTPS service providing the APIs and storage to define the

various MLEs in the environment, their attributes, policy-driven Trust definition, the

‘Golden Measurements’ for the modules, and the PCR Manifests.

Historical Integrity Reporting Portal Appraiser, as a reference implementation,

internally tracks each host’s historical integrity reports. The Portal provides an interface

to view historical data as well as details of integrity data reported by hosts

HostAgent API HTTPS Connection point for HostAgent to send in integrity report with

TCG Integrity Report Schema

ProvacyCA verifies Hosts’ TPM Endorsement Key (EK) & issue EK Certificate (EKC).

EKC used by Host to request Attestation Identification Key (AIK) Certificate (AIC)

Appraiser verifies Host measurement which signed by Host AIC

4 OpenAttestation control flow
4.1 HostAgent Installation/Provisioning – EK and AIK

certificates

The above flow describes HostAgent provisioning to get Endorsement Key (EK)

certificate and how it gets Attestation Identity Key (AIK) certificate from ProvicyCA,

and then register its Hostname associated with AIC into Appraiser

5 Attestation Control flow
5.1 Host initiated attestation

Attestation flow is run as Host initiated Attestation, that is, Host system will poll

Appraiser periodically to query if any active task it should perform, Appraiser can then

set active task to request integrity report.

6 OpenAttestation API

We will describe OpenAttestation exported Restful APIs, which is Integrity Attestation

Service API enables querying a platform’s integrity state, and WhiteList API which

enables administrator to setup good/known measurement PCRs for appraiser.

6.1 Security Notes

For access control and security purpose, all the APIs exported from Attestation service

will be HTTPS based. However the SDK internal implementation doesn’t impose any

authentication or access control verification, rather it solely depends following 2

mechanisms for authentication –

 ISV specific authentication verification – An Auth-blob is included in all the

headers as request to attestation service. Attestation service will pass this blob

to ISV specific function for authentication verification.

 Tomcat Truststore client and server certificate authentication for platform

accesses – Tomcat provided SSL authentication through Keystore/Truststore

authentication for client to access server as well as client verifying server

before connection

It is strongly recommended that ISV must implement its own software specific

authentication logic, and Attestation service provider should also implement Tomcat 2-

way authentication to securely control platforms that are allowed to access to API

services

6.2 API Request/Response Types

Current Attestation APIs support JSON data serialization format, where

 The request format is specified by using Context-Type header and is required for

operations that havea request body

 The response format is specified in request header using Accept

 Accept type is default to JSON if not specified in request header

6.3 Authentication header

All requests to attestation server is required to include an authentication blob, Auth-blob,

within request header. Where Auth-blob is ISV authentication specific and is opaque to

OpenAttestation API.

Note: ISV must implement its own ISV_Authentication_verification() function to

complete the authentication logic. The default ISV_Authentication_Verification() logic

is true.

6.4 Example of request with headers: JSON

Following example should a request to attestation server and its response in JSON format

6.5 Attestation Service API

Following lists Attestation Service APIs

6.5.1 Add Host

This API registers a new host with the system for attestation.

Method type: POST

Sample Call: https://Server_Name:8443/AttestationService/resources/hosts

Sample Input:

{"HostName":"TestHost1","IPAddress":"192.168.1.1","Port":"9999","BIOS_Na

me":"EPSD","BIOS_Version":"55","BIOS_Oem":"EPSD","VMM_Name":"Xen"

,"VMM_Version":"4.1.1","VMM_OSName":"RHEL","VMM_OSVersion":"6.1",

"Email":"","AddOn_Connection_String":"","Description":""}

Sample Output: True (HTTP Status code: 200)

If proper BIOS or VMM or OEM or OS is not chosen, accordingly the error

message would be different.

Sample Input:

{"HostName":"TestHost1","IPAddress":"192.168.192.168","Port":"9999","BIOS

_Name":"EPSD","BIOS_Version":"55","BIOS_Oem":"EPSD","VMM_Name":"

Xen","VMM_Version":"4.1.1","VMM_OSName":"RHEL","VMM_OSVersion":

"6.1","Email":"","AddOn_Connection_String":"","Description":""}

Sample Output: HTTP Status code: 400

{

"error_code": 2001,

"error_message": "Network error - Error while connecting to TrustAgent on

host [192.168.192.168]"

}

6.5.2 Edit Host

This API allows the user to update all the host details except for the host name.

Note that the IP address and Port number are required for OpenSource hosts.

Method Type: PUT

Sample Call: https://Server_Name:8443/AttestationService/resources/hosts

Sample Input:

{"HostName":"TestHost1","IPAddress":"192.168.1.1","Port":"9999","BIOS_Na

me":"EPSD","BIOS_Version":"55","BIOS_Oem":"EPSD","VMM_Name":"Xen"

,"VMM_Version":"4.1.1","VMM_OSName":"RHEL","VMM_OSVersion":"6.1",

"Email":"testemail@intel.com","AddOn_Connection_String":"","Description":"U

pdated Description"}

Sample Output: True (HTTP Status code: 200)

6.5.3 Delete Host

This API deletes a host that is already configured in the system.

Method type: DELETE

Sample Call:

https://Server_Name:8443/AttestationService/resources/hosts?hostName=TestHo

st1

Sample Output: true (HTTP Status code: 200)

https://10.1.71.143:8181/AttestationService/resources/hosts
https://10.1.71.143:8181/AttestationService/resources/hosts
https://10.1.71.143:8181/AttestationService/resources/hosts?hostName=TestHost1
https://10.1.71.143:8181/AttestationService/resources/hosts?hostName=TestHost1

If in case the host that the user is trying to delete does not exist, an error would be

returned back to caller.

Sample Call:

https://Server_Name:8443/AttestationService/resources/hosts?hostName=TestHo

st25

Sample Output: HTTP Status code: 400

{

"error_code": 2000,

"error_message": "Host not found - Host - 'TestHost25' that is being deleted

does not exist."

}

6.5.4 Query for Hosts

This API retrieves the list of the hosts registered with OAT based on the search

criteria specified. If the search criteria is empty, then all the hosts are retrieved or

else only the specific hosts whose name matched the criteria is retrieved.

Method Type: GET
Sample Call: https://Server_Name:8443/

AttestationService/resources/hosts?searchCriteria=192

Sample Output:

"[{"HostName":"Server_Name","IPAddress":"127.0.0.1","Port":9999,"BIOS_Na

me":"EPSD","BIOS_Version":"v60","BIOS_Oem":"EPSD","VMM_Name":"Xen

","VMM_Version":"4.1.0","VMM_OSName":"SUSE","VMM_OSVersion":"11

P2","AddOn_Connection_String":"","Description":"10.1.71.149

SUSE","Email":"","Location":null},

{"HostName":"192.168.1.101","IPAddress":"192.168.1.101","Port":9999,"BIOS_

Name":"Intel_Ubuntu","BIOS_Version":"T060","BIOS_Oem":"Intel

Corp.","VMM_Name":"QEMU","VMM_Version":"11.10-

0.14.1","VMM_OSName":"UBUNTU","VMM_OSVersion":"11.10","AddOn_C

onnection_String":null,"Description":null,"Email":null,"Location":null}]"

6.5.5 Poll Hosts for Trust Status

This API was specifically added for the OpenStack integration, which also

provides the current trust status of all the hosts passed in.

Method Type: POST

Sample Call: https://Server_Name:8443/AttestationService/resources/PollHosts

Sample Input: {"hosts":["ubuntu-txtnode","Phase2Host1"]}

Sample Output:

{"hosts":[

{"host_name":"localhost","trust_lvl":"trusted",

"vtime":"2012-10-15T22:36:58.836+08:00"},

{"host_name":"ubuntu1104","trust_lvl":"trusted",

https://10.1.71.143:8181/AttestationService/resources/hosts?hostName=TestHost25
https://10.1.71.143:8181/AttestationService/resources/hosts?hostName=TestHost25
https://192.168.1.100:8181/%20AttestationService/resources/hosts?searchCriteria=
https://192.168.1.100:8181/%20AttestationService/resources/hosts?searchCriteria=
https://10.1.71.143:8181/AttestationService/resources/PollHosts

"vtime":"2012-10-15T22:36:58.836+08:00"}

]}

6.6 WhiteList Service API

Following lists WhiteList Service APIs

6.6.1 Add Operating System (OS)

This API creates new OS information in the system.

Method type: POST

Sample Call: https://Server_Name:8443/WLMService/resources/os

Sample Input: {"Name":"OS Name 1","Version":"v1234","Description":"Test

OS"}

Sample Output: True (HTTP Status code: 200)

If the OS Name/Version combination already exists in the database an appropriate

error would be returned back.

Sample Input: {"Name":"OS Name 1","Version":"v1234","Description":"New

description"}

Sample Output: (Http Status Code: 400)

{

"error_code": 1006,

"error_message": "Data Error - OS OS Name 1 Version v1234 already exists

in the database"

}

6.6.2 Edit OS

This API updates the details of an existing OS that is configured in the system.

Only the description field is editable.

Method type: PUT

Sample Call: https://Server_Name:8443/WLMService/resources/os

Sample Input: {"Name":"OS Name 1","Version":"v1234","Description":"Test OS

description updated"}

Sample Output: True (HTTP Status code: 200)

If in case the user tries to update a non-existent OS Name/Version combination,

the follow error would be sent back to the caller.

Sample Input: {"Name":"OS Name 1","Version":"v12345","Description":"Test

OS description updated"}

Sample Output: (Http Status Code: 400)

{

"error_code": 1006,

"error_message": "Data Error - OS OS Name 1 Version v12345 does not exist

in the database"

}

6.6.3 Delete OS

This API deletes an existing OS that is configured in the system.

Method type: DELETE

https://10.1.71.143:8181/WLMService/resources/os
https://10.1.71.143:8181/WLMService/resources/os

Sample Call: https://Server_Name:8443/WLMService/resources/os?Name=OS

Name 1&Version=v1234

Sample Output: True (HTTP Status code: 200)

If the OS that the user is trying to delete does not exist, an appropriate error

message would be returned back to the caller.

Sample Call: https://Server_Name:8443/WLMService/resources/os?Name=OS

Name 1&Version=v12

Sample Output: (Http Status Code: 400)

{

"error_code": 1006,

"error_message": "Data Error - OS OS Name 1 Version v12 does not exist in

the database"

}

6.6.4 View OS

Retrieves the list of all the OS that is configured in the system.

Method type: GET

Sample Call: https://Server_Name:8443/WLMService/resources/os

Sample Output: (HTTP Status code: 200)

[(3)

{

"Name": "RHEL",

"Version": "6.1",

"Description": null

},

{

"Name": "UBUNTU",

"Version": "11.10",

"Description": null

},

]

https://10.1.71.143:8181/WLMService/resources/os?Name=OS%20Name%201&Version=v1234
https://10.1.71.143:8181/WLMService/resources/os?Name=OS%20Name%201&Version=v1234
https://10.1.71.143:8181/WLMService/resources/os?Name=OS%20Name%201&Version=v12
https://10.1.71.143:8181/WLMService/resources/os?Name=OS%20Name%201&Version=v12
https://10.1.71.143:8181/WLMService/resources/os

6.6.5 Add OEM

This API creates new OEM information in the system.

Method type: POST

Sample Call: https://Server_Name:8443/WLMService/resources/oem

Sample Input: {"Name":"OEM1","Description":"New OEM description"}

Sample Output: True (HTTP Status code: 200)

If the OEM Name already exists in the database an appropriate error would be

returned back.

Sample Input: {"Name":"OEM1","Description":"New description"}

Sample Output: (Http Status Code: 400)

{

"error_code": 1006,

"error_message": "Data Error - OEM OEM1 already exists in the database"

}

6.6.6 Edit OEM

Updates the description of the OEM already configured in the system.

Method type: PUT

Sample Call: https://Server_Name:8443/WLMService/resources/oem

Sample Input: {"Name":"OEM1","Description":"Updated description"}

Sample Ouput: True (HTTP Status code: 200)

If in case the OEM does not exist in the database, an appropriate error would be

returned back.

Sample Input: {"Name":"OEM2","Description":"OEM2 Description"}

Sample Output: (Http Status Code: 400)

{

"error_code": 1006,

"error_message": "Data Error - OEM OEM2 does not exist in the database"

}

https://10.1.71.143:8181/WLMService/resources/oem
https://10.1.71.143:8181/WLMService/resources/oem

6.6.7 View OEM

This API retrieves the list of all the OEMs that are currently configured in the

system.

Method type: GET

Sample Call: https://Server_Name:8443/WLMService/resources/oem

Sample Output: (HTTP Status code: 200)

[(3)

{

"Name": "GENERIC",

"Description": "Default Oem for testing"

},

{

"Name": "EPSD",

"Description": "Intel white boxes"

},

{

"Name": "HP",

"Description": "HP Systems"

}

]

6.6.8 Delete OEM

This API deletes an existing OEM configured in the system.

Method type: DELETE

Sample Call:

https://Server_Name:8443/WLMService/resources/oem?Name=OEM1

Sample Output: True (HTTP Status code: 200)

If in case the OEM that the user is trying to delete does not exist, an appropriate

error would be returned back.

Sample Call:

https://Server_Name:8443/WLMService/resources/oem?Name=OEM2

Sample Output: (Http Status Code: 400)

{

"error_code": 1006,

"error_message": "Data Error - OEM OEM2 does not exist in the database"

}

6.6.9 Add MLE (Measured Launch Environment)

This API creates a new MLE in the system. There will be 2 types of MLEs: BIOS

and VMM. BIOS MLEs are tied to OEMs that are already configured. VMM type

MLEs are tied to the OS that is pre-configured in the system. Each host created in

the system, will be tied to both a BIOS MLE and a VMM MLE.

Note: The manifest list can be empty and can be added later on using the white

list management REST APIs.

Method type: POST

Sample Call: https://Server_Name:8443/WLMService/resources/mles

Sample Input: {"Name":"New RHEL

MLE","Version":"123","OsName":"RHEL","OsVersion":"6.1","Attestation_Type

": "PCR","MLE_Type":"VMM","Description":"Test","MLE_Manifests":

[{"Name": "18", "Value": "87654321"}]}

Sample Output: True (HTTP Status code: 200)

If the OS information does not exist in the system, an appropriate error would be

returned back.

Sample Input: {"Name":"New RHEL

MLE","Version":"123","OsName":"RHEL","OsVersion":"6.9","Attestation_Type

": "PCR","MLE_Type":"VMM","Description":"Test","MLE_Manifests":

[{"Name": "18", "Value": "87654321"}]}

Sample Output: (Http Status Code: 400)
{

"error_code": 1006,

"error_message": "Data Error - OS [RHEL] Version [6.9] does not exist."

}

6.6.10 Edit MLE

This API allows the user to edit an already configured MLE in the system.

Method Type: PUT

Sample Call: https://Server_Name:8443/WLMService/resources/mles

Sample Input: {"Name":"New RHEL

MLE","Version":"123","OsName":"RHEL","OsVersion":"6.1","Attestation_Type

":"PCR","MLE_Type":"VMM","Description":"Updated

Description","MLE_Manifests": [{"Name": "18", "Value":

"87654321"},{"Name": "19", "Value": "12345678"}]}

Sample Output: True (HTTP Status code: 200)

https://10.1.71.143:8181/WLMService/resources/mles
https://10.1.71.143:8181/WLMService/resources/mles

6.6.11 View MLE

This API retrieves the details of the MLE including the associated Good Known

Values (GKVs). For MLEs of BIOS type, the OEM information needs to be

passed. For MLEs of VMM type, the OS Name/OS Version has to be passed in.

Method Type: GET

Sample Call:

https://Server_Name:8443/WLMService/resources/mles/manifest?mleName=EPS

D&mleVersion=55&oemName=EPSD

Sample Output:

{

"Name": "EPSD",

"Version": "55",

"Description": "",

"OsName": null,

"OsVersion": null,

"Attestation_Type": "PCR",

"OemName": "EPSD",

"MLE_Manifests": [(1)

{

"Name": "0",

"Value": "E3A29BD603BF9982113B696CD37AF8AFC58E2877"

}],

"MLE_Type": "BIOS"

}

For the MLEs of type VMM:

Sample Call:

https://Server_Name:8443/WLMService/resources/mles/manifest?mleName=Xen

&mleVersion=4.1.1&osName=RHEL&osVersion=6.1

Sample Output:

{

"Name": "Xen",

"Version": "4.1.1",

"Description": "",

"OsName": "RHEL",

"OsVersion": "6.1",

"Attestation_Type": "PCR",

"OemName": null,

"MLE_Manifests": [(3)

{

"Name": "17",

"Value": "EC2CF197E639AFA7D30EE800723FDEBF609A7B6A"

},

{

"Name": "18",

"Value": "709057CABCFCFCB8C12C7759369ADBC180B568FA"

https://10.1.71.143:8181/WLMService/resources/mles/manifest?mleName=EPSD&mleVersion=55&oemName=EPSD
https://10.1.71.143:8181/WLMService/resources/mles/manifest?mleName=EPSD&mleVersion=55&oemName=EPSD
https://10.1.71.143:8181/WLMService/resources/mles/manifest?mleName=Xen&mleVersion=4.1.1&osName=RHEL&osVersion=6.1
https://10.1.71.143:8181/WLMService/resources/mles/manifest?mleName=Xen&mleVersion=4.1.1&osName=RHEL&osVersion=6.1

},

{

"Name": "19",

"Value": "6E8042086A6A383CCAD60C064DD521335FDC9BCE"

}

],

"MLE_Type": "VMM"

}

6.6.12 Search MLE

This API provides the user capability to retrieve the list of MLEs matching the

search criteria. If the search criterion is empty, it retrieves the list of all the MLEs.

Method Type: GET

Sample Call:

https://Server_Name:8443/WLMService/resources/mles?searchCriteria=HP

Sample output:

[(2)

{

"Name": "HP",

"Version": "P67",

"Description": "",

"OsName": null,

"OsVersion": null,

"OemName": "HP",

"MLE_Manifests": null,

"Attestation_Type": "PCR",

"MLE_Type": "BIOS"

},

{

"Name": "HP",

"Version": "P67-2",

"Description": "",

"OsName": null,

"OsVersion": null,

"OemName": "HP",

"MLE_Manifests": null,

"Attestation_Type": "PCR",

"MLE_Type": "BIOS"

}

]

https://10.1.71.143:8181/WLMService/resources/mles?searchCriteria=HP

6.6.13 Delete MLE

This API deletes an existing MLE if it is not associated with any host. If the MLE

type is VMM, then the OS name & version information have to be provided. If

the MLE is of BIOS type, then the OEM information has to be passed into the

API call.

Method Type: DELETE

Sample Call:

https://Server_Name:8443/WLMService/resources/mles?mleName=New RHEL

MLE&mleVersion=123&osName=RHEL&osVersion=6.1

Sample Output: True (HTTP Status code: 200)

If any of the information does not match with the configuration in the database, an

appropriate error would be returned back.

Sample Call:

https://Server_Name:8443/WLMService/resources/mles?mleName=New RHEL

MLE&mleVersion=123&osName=RHEL&osVersion=6.9

Sample Output:

{

"error_code": 1007,

"error_message": "WLM Service Error - MLE not found in attestion data to

update"

}

6.6.14 Add PCR White List

This API adds a white list value (good known value) for the specified MLE. If the

MLE type is VMM, then the OS name & version information have to be sent. If

the MLE type is BIOS, then the OEM information has to be passed into the API

call.

Note: This API is only for adding white lists for MLE’s that support PCR

attestation. These include BIOS MLEs and OpenSource VMM MLEs.

Method type: POST

Sample Call:

https://Server_Name:8443/WLMService/resources/mles/whitelist/pcr

Sample Input:

{"pcrName":"0","pcrDigest":"ACE7AB9D3582097C9BC739C9311D60B5B5F5

603A", "mleName":"Intel_BIOS","mleVersion":"s60", "oemName": "Intel

Corporation"}

Sample Output: True (HTTP Status code: 200)

If the MLE information does not exist in the system, an appropriate error would

be returned back.

https://10.1.71.143:8181/WLMService/resources/mles?mleName=New%20RHEL%20MLE&mleVersion=123&osName=RHEL&osVersion=6.1
https://10.1.71.143:8181/WLMService/resources/mles?mleName=New%20RHEL%20MLE&mleVersion=123&osName=RHEL&osVersion=6.1
https://10.1.71.143:8181/WLMService/resources/mles?mleName=New%20RHEL%20MLE&mleVersion=123&osName=RHEL&osVersion=6.9
https://10.1.71.143:8181/WLMService/resources/mles?mleName=New%20RHEL%20MLE&mleVersion=123&osName=RHEL&osVersion=6.9
https://10.1.71.143:8181/WLMService/resources/mles

6.6.15 Update PCR White List

This API updates the specified white list value (good known value) for the

specified MLE.

Note: This API is only for updating white lists for MLE’s that support PCR

attestation. These include BIOS and OpenSource hypervisors.

Method type: PUT

Sample Call:

https://Server_Name:8443/WLMService/resources/mles/whitelist/pcr

Sample Input:

{"pcrName":"0","pcrDigest":"DE1343582097C9BC739C9311D60B5B5F5603A",

"mleName":"Intel_BIOS","mleVersion":"s60", "oemName": "Intel Corporation"}

Sample Output: True (HTTP Status code: 200)

If in case either the PCR details or the MLE details do not match, an appropriate

error message would be returned back to the caller.

6.6.16 Delete PCR White List

This API deletes the specified white list value (good known value) for the

specified MLE.

Note: This API is only for deleting white lists for MLE’s that support PCR

attestation. These include BIOS & OpenSource hypervisors.

Method type: DELETE

Sample Call:

https://Server_Name:8443/WLMService/resources/mles/whitelist/pcr?pcrName=0

&mleName=Intel_BIOS&mleVersion=s60&oemName=Intel Corporation

Sample Output: True (HTTP Status code: 200)

If in case either the PCR details or the MLE details do not match, an appropriate

error message would be returned back to the caller.

https://10.1.71.143:8181/WLMService/resources/mles

